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with v (x) = N*v(N?x) and § € [0,1].

The ground state 1)y exhibits Bose-Einstein condensation
Ty — Nlp)(pl| < €, forall NeN, But: oy ="

following from Lieb-Seiringer (2001) for all 5 € [0, 1]
See: Brennecke, Cenatiempo, Lewin, Nam, Schlein, Serfaty, Solovej,...

Random variables Y/': with law
Py, [V € A] = (4w, 14(07)yw)
for bounded self.adjoint operator O are identically distributed and correlated.
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Note:
» Proof for =1

» Gaussian fluctuations around v,

48




8. Open questions



8. Open questions

49



8. Open questions

» Sanov's type estimates ?

49



8. Open questions

» Sanov's type estimates ?

> Large deviation estimates for 3 € (0, 1]

49



8. Open questions

» Sanov's type estimates ?
> Large deviation estimates for 3 € (0, 1]

> Higher order terms of rate function for all g € [0, 1]

49



8. Open questions

» Sanov's type estimates ?
> Large deviation estimates for 3 € (0, 1]
> Higher order terms of rate function for all g € [0, 1]

» Large deviation principle?

49



v

v

v

v

8. Open questions

Sanov's type estimates ?

Large deviation estimates for 8 € (0, 1]

Higher order terms of rate function for all 5 € [0, 1]
Large deviation principle?

Positive Temperatures?

49



8. Open questions

Sanov's type estimates ?

Large deviation estimates for 8 € (0, 1]

Higher order terms of rate function for all 5 € [0, 1]
Large deviation principle?

Positive Temperatures?

Thermodynamic limit?

49



8. Open questions

Sanov's type estimates ?

Large deviation estimates for 8 € (0, 1]

Higher order terms of rate function for all 5 € [0, 1]
Large deviation principle?

Positive Temperatures?

Thermodynamic limit?

Thanks for your attention.

49



